If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=65
We move all terms to the left:
2x^2-(65)=0
a = 2; b = 0; c = -65;
Δ = b2-4ac
Δ = 02-4·2·(-65)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{130}}{2*2}=\frac{0-2\sqrt{130}}{4} =-\frac{2\sqrt{130}}{4} =-\frac{\sqrt{130}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{130}}{2*2}=\frac{0+2\sqrt{130}}{4} =\frac{2\sqrt{130}}{4} =\frac{\sqrt{130}}{2} $
| 13+s/28=-9 | | -9z-4z=0 | | -3x-4(2x-5)=-2 | | 1/8h-16=-26 | | -55=7(1+x)-20 | | 12x?-8=100 | | 2x+9+3x+1+90=180 | | 10(a-5)+15=-15 | | a−8.1=2.8 | | y+17/2=-29 | | a-16=3a-72 | | 41=13-4(x-5) | | 28=18-10(s+10) | | -3(c-7)=24 | | 21=-5(d-3)-14 | | 1/2=x10 | | 23-r/16=-11 | | 4-7x=x-19 | | 32=8(12+t) | | -8.4=-6j | | -3+3/8f=27 | | 4t-15=-43 | | 3(t+4)-2(2+3t)=-4 | | x^2+14x-312=0 | | 3(x+4.3)=4x+2 | | 3/4-f=1/4 | | 8-5s=37 | | 6(x-4)-(5x+4)=3(5x+2) | | -2.2+x=-3.5 | | 3(t+4)-2(2+t3)=-4 | | 11z−3−7z=9 | | w-2((8-w)=-31 |